所有的 要全~
初中所有三角形里面的所有定理
答案:2 悬赏:30 手机版
解决时间 2021-05-09 09:29
- 提问者网友:却不属于对方
- 2021-05-08 19:41
最佳答案
- 五星知识达人网友:举杯邀酒敬孤独
- 2021-05-08 19:49
勾股定理:直角三角形中:直角边的平方和等于斜边的平方和.
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,这就叫做正弦定理
余弦定理:余弦: cosα=(B^2+C^2-A^2)/2BC
cosb=(A^2+C^2-B^2)/2AC
cosc=(A^2+B^2-C^2)/2AB
定理 三角形两边的和大于第三边
推论 三角形两边的差小于第三边
三角形内角和定理 三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角的和
推论3 三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
边边边公理(SSS) 有三边对应相等的两个三角形全等
斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
定理1 在角的平分线上的点到这个角的两边的距离相等
定理2 到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1 三个角都相等的三角形是等边三角形
推论 2 有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1 关于某条直线对称的两个图形是全等形
定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,这就叫做正弦定理
余弦定理:余弦: cosα=(B^2+C^2-A^2)/2BC
cosb=(A^2+C^2-B^2)/2AC
cosc=(A^2+B^2-C^2)/2AB
定理 三角形两边的和大于第三边
推论 三角形两边的差小于第三边
三角形内角和定理 三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角的和
推论3 三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
边边边公理(SSS) 有三边对应相等的两个三角形全等
斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
定理1 在角的平分线上的点到这个角的两边的距离相等
定理2 到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1 三个角都相等的三角形是等边三角形
推论 2 有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1 关于某条直线对称的两个图形是全等形
定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
全部回答
- 1楼网友:西岸风
- 2021-05-08 20:05
三角形相关定理
重心定理
三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.
上述交点叫做三角形的重心.
外心定理
三角形的三边的垂直平分线交于一点.
这点叫做三角形的外心.
垂心定理
三角形的三条高交于一点.
这点叫做三角形的垂心.
内心定理
三角形的三内角平分线交于一点.
这点叫做三角形的内心.
旁心定理
三角形一内角平分线和另外两顶点处的外角平分线交于一点.
这点叫做三角形的旁心.三角形有三个旁心.
三角形的重心、外心、垂心、内心、旁心称为三角形的五心.
它们都是三角形的重要相关点.
中位线定理
三角形的中位线平行于第三边且等于第三边的一半.
三边关系定理
三角形任意两边之和大于第三边,任意两边之差小于第三边.
三角形面积计算公式
S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半
[编辑本段]勾股定理
在Rt三角形ABC中,A≤90度,则
AB·AB+AC·AC=BC·BC
A〉90度,则
AB·AB+AC·AC>BC·BC
[编辑本段]梅涅劳斯定理
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
证明:
过点A作AG‖BC交DF的延长线于G,
则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写
为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。
我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。只“路过”而不停留观赏的景点,不能算是“游历”。
例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。
另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。
从A点出发的旅游方案共有四种,下面逐一说明:
方案 ① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。
按照这个方案,可以写出关系式:
(AF:FB)*(BD:DC)*(CE:EA)=1。
现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。
从A点出发的旅游方案还有:
方案 ② ——可以简记为:A→B→F→D→E→C→A,由此可写出以下公式:
(AB:BF)*(FD:DE)*(EC:CA)=1。从A出发还可以向“C”方向走,于是有:
方案 ③ —— A→C→E→D→F→B→A,由此可写出公式:
(AC:CE)*(ED:DF)*(FB:BA)=1。 从A出发还有最后一个方案:
方案 ④ —— A→E→C→D→B→F→A,由此写出公式:
(AE:EC)*(CD:DB)*(BF:FA)=1。
我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式。
值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项。当直升机降落在B点时,就会有四项因式。而在C点和F点,既会有三项的公式,也会有四项的公式。公式为四项时,有的景点会游览了两次。
不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看。
现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢。那些复杂的相除相乘的关系式,不会再写错或是记不住吧。
[编辑本段]塞瓦定理
塞瓦定理
设O是△ABC内任意一点,
AO、BO、CO分别交对边于D、E、F,则 BD/DC*CE/EA*AF/FB=1
证法简介
(Ⅰ)本题可利用梅涅劳斯定理证明:
∵△ADC被直线BOE所截,
∴ CB/BD*DO/OA*AE/EC=1 ①
而由△ABD被直线COF所截,∴ BC/CD*DO/OA*AF/BF=1②
②÷①:即得:BD/DC*CE/EA*AF/FB=1
(Ⅱ)也可以利用面积关系证明
∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③
同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤
③×④×⑤得BD/DC*CE/EA*AF/FB=1
利用塞瓦定理证明三角形三条高线必交于一点:
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/
[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯