(1)如果a,b都是正数,且a≠b,求证a6+b6>a4b2+a2b4(2)设a,b,c为△ABC的三条边,求证(a+b+c)2<
答案:1 悬赏:0 手机版
解决时间 2021-11-24 22:10
- 提问者网友:沦陷
- 2021-11-24 02:21
(1)如果a,b都是正数,且a≠b,求证a6+b6>a4b2+a2b4(2)设a,b,c为△ABC的三条边,求证(a+b+c)2<
最佳答案
- 五星知识达人网友:蓝房子
- 2021-11-24 03:17
证明:(1)a6+b6-(a4b2+a2b4)=a4(a2-b2)-b4(a2-b2)=(a2-b2)2(a2+b2)
∵a,b都是正数,且a≠b,
∴(a2-b2)2(a2+b2)>0,
∴a6+b6>a4b2+a2b4
(2)要证原不等式成立,只需证4(ab+bc+ca)-(a+b+c)2>0
即a2+b2+c2-2(ab+bc+ca)<0,
即a2+b2+c2-a(b+c)-b(c+a)-c(a+b)<0,
也即a[a-(b+c)]+b[b-(c+a)]+c[c-(a+b)]<0成立.
因为a,b,c为△ABC的三条边,所以a-(b+c)<0,b-(c+a)<0,c-(a+b)<0
即从而a[a-(b+c)]+b[b-(c+a)]+c[c-(a+b)]<0成立,所以原不等式也成立
∵a,b都是正数,且a≠b,
∴(a2-b2)2(a2+b2)>0,
∴a6+b6>a4b2+a2b4
(2)要证原不等式成立,只需证4(ab+bc+ca)-(a+b+c)2>0
即a2+b2+c2-2(ab+bc+ca)<0,
即a2+b2+c2-a(b+c)-b(c+a)-c(a+b)<0,
也即a[a-(b+c)]+b[b-(c+a)]+c[c-(a+b)]<0成立.
因为a,b,c为△ABC的三条边,所以a-(b+c)<0,b-(c+a)<0,c-(a+b)<0
即从而a[a-(b+c)]+b[b-(c+a)]+c[c-(a+b)]<0成立,所以原不等式也成立
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯