对流扩散方程的特点
答案:1 悬赏:0 手机版
解决时间 2021-03-20 01:42
- 提问者网友:精神病院里
- 2021-03-19 19:37
对流扩散方程的特点
最佳答案
- 五星知识达人网友:青尢
- 2021-03-19 20:19
对流扩散方程右端第一项为扩散项,左端第二项则是对流项。由于其方程本身的特点,给建立准确有效的数值求解方法带来一定的困难。对流和扩散给流体中由流体携带的某种物理量的变化过程,可以通过一个无量纲的特征参数(Peclet数)来描述,Peclet数Pe的定义为:Pe=|ν|L/D。这里v是对流速度,L是特征长度,D是物质的扩散系数。如果Pe数较小,即对流效应相对较弱,这类问题中,扩散占主导地位,方程是椭圆型或抛物线型;如果Pe数较大,即溶质分子的扩散相对于流体速度而言是缓慢的,这类问题中,对流占优,方程具有双曲型方程的特点。
对于对流占优问题的求解,采用常规的Galerkin有限元方法,为了避免求解结果产生数值振荡,获得稳定解,则应使每个单元的局部Peclet数,Peh=|ν|h/D≤2,这里h为单元的最大尺寸,|v|为单元中的最大速度分量值。因此,用本文方法求解对流占优对流扩散问题,要得到稳定解,则要通过加密有限元网格来实现。
对于对流占优问题的求解,采用常规的Galerkin有限元方法,为了避免求解结果产生数值振荡,获得稳定解,则应使每个单元的局部Peclet数,Peh=|ν|h/D≤2,这里h为单元的最大尺寸,|v|为单元中的最大速度分量值。因此,用本文方法求解对流占优对流扩散问题,要得到稳定解,则要通过加密有限元网格来实现。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯