如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为
A.32B.40C.72D.64
如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为A.32B.4
答案:2 悬赏:50 手机版
解决时间 2021-04-08 21:55
- 提问者网友:鐵馬踏冰河
- 2021-04-08 10:16
最佳答案
- 五星知识达人网友:污到你湿
- 2021-04-08 11:26
C解析分析:①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形“扩展”而来的多边形的边数为n(n+1).解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).当n=8时,8(8+1)=72个,故选C.点评:本题考查了图形的变化类问题,首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).
全部回答
- 1楼网友:迟山
- 2021-04-08 12:13
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯